Summary of: Keefe, D. H., & Simmons, J. L. (2003). Energy transmittance predicts conductive hearing loss in older children and adults. The Journal of the Acoustical Society of America, 114(6 Pt 1), 3217–3238. https://doi.org/10.1121/1.1625931
Wideband absorbance and acoustic admittance are useful tools in the study of middle-ear function in neonates, infants, older children and adults. Ambient-pressure wideband measures such as reflectance (or absorbance) are better indicators of conductive hearing loss and middle-ear dysfunction relative to standard 226-Hz tympanometry. As such, the use of a single frequency as in conventional tympanometry is not optimal for studying middle-ear function at all the frequencies that are important for human auditory communication. Further, wideband measures of middle-ear function are sensitive to otitis media, otosclerosis, ossicular discontinuity, and tympanic membrane perforation. Finally, wideband tympanometry (absorbance over a range of pressure) contains information that is absent in ambient pressure absorbance. This study compares the performance of 226-Hz tympanometry, wideband tympanometry (WBT), and ambient-pressure absorbance (WBA) in the prediction of conductive hearing loss in 42 normal-hearing ears and 18 ears with a conductive hearing loss across a group comprised of adults and older children above the age of 10 years. Using a fixed specificity of 90%, WBT is most sensitive (94%) followed by WBA (72%) and finally peak compensated 226-Hz tympanometry (28%). The area under the receiver operating characteristic (ROC) curve (where 0.5 represents chance and 1.0 is perfect performance), WBT achieves a 0.95 and WBA a 0.9, which indicates that wideband measures of absorbance both pressurized and ambient are better predictors of conductive hearing loss relative to conventional tympanometry. These results suggest that wideband measures of middle-ear function, as is possible via the Titan, improve clinical diagnostics related to conductive hearing loss over conventional tympanometry.